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DYNAMICS ANALYSIS OF COOLANT CIRCULATION
IN BOILING WATER NUCLEAR REACTORS

by

Chathilingath K. Sanathanan

ABSTRACT

The dynamics of two-phase flow through the coolant
channels of a natural-circulation boiling water nuclear re-
actor is studied analytically. One-dimensional conservation
equations describing the flow through each channel are writ-
ten in the linearized perturbed form, and Laplace transfor-
mation in time is performed. A systematic procedure is
developed to approximate the solution. The solution may be
oscillatory both in time and space, and the stability depends
largely upon the steady-state profile of velocity and void
fraction along the channel, as well as the channel length.
The simplifying assumption made by earlier investigators
that the slip ratio is constant along the channel length is
shown to yield results close to the true solution.

The solution gives the space-time dependent tran-
sient steam void fractionwhich when multiplied by the reac-
tivity worth of void yields the space-time dependent void
reactivity. Coupling between parallel channels due to a com~-
mon downcomer is investigated.

Several specific problems are considered and the
predicted solutions are substantiated by comparison with
those obtained throughelaborate numerical methods and pre-
vious observations.

The analytical techniques developed are applicable
to both natural- and forced-circulation systems.
I. INTRODUCTION

"I have no doubt whatever that our ultimate aim must
be to describe the sensible in terms of the sensible."
JEE S Poynting

A good understanding of the dynamics of two-phase flow through
heated boiling channels is essential to the design of high-performance



boilers and boiling nuclear reactors. Because of the effect of st.ea1:n void.s
on the reactivity, and hence on the control of a nuclear reactor, 1t‘ is Partm-
ularly important to understand the transient behavior of steam voids in the
coolant channels.

Several attempts(l’S) have been made in the past years to uncover
the possibility of instability, flow oscillations, or chugging in heated boiling
channels with forced or natural circulation. The philosophy of almost all
the past theoretical approaches has been to arrive at a solution to the egua-
tions expressing the conservation of energy, mass, and momentum pertinent
to the system on the basis of several simplifying assumptions. In some of
the elaborate numerical methods introduced by Meyer et al., 2,4) the simpli-
fying assumptions have been kept to a minimum, and there has been good
agreement between the predicted and experimentally observed results.

There are two main disadvantages to the numerical approach, however,
namely, that tremendous care must be exercised with respect to the computer
programming each time the method is applied to different systems, and ¥sees
ondly, that an explicit functional form of the time-space dependence of the
solution is not obtained directly. Also, because of this lack of functional
form, the numerical approach does not readily lend itself to analysis of com-
plementary problems.

A} second approach, the transfer-function technique, was proposed by
Quand’c(l to study the response of two-phase flow to a given change in the
heat flux. In this technique the space-time-dependent conservation equations
were solved in their linearized perturbed form, there being assumed a
knowledge of the steady state and one-dimensional space.

In Quandt's method, however, one is expected to know the exact spa-
tial dependence of the solution even before the equations are solved. Spe-
cifically, the method assumes that the perturbed mass flow rate is linear
along the length of the channel and that the perturbed fluid enthalpy always
follows the integrated perturbed heat flux. These assumptions may not in-
troduce large errors in the predicted dynamic behavior if the channel trans-
port time is small compared with the period of flow oscillation. This was
the case in the particular experimental setup which was used to observe the
oscillations, and satisfactory agreement between the theoretical predictions
and experimental observations was found. One may observe that these as-
sumptions force the perturbations to have their extremums at the channel
end points at all times, which is not true.

The present study is an attempt to avoid the above difficulties in ob-
taining both the time and space variations of the solution of the linearized
perturbed conservation equations. To be sure, assumptions such as the flow
is separated, the variables are unidimensional in space, and so forth, are

made in the derivation of these equations. These assumptions are given in
Section II.



The following is a very brief introduction to the present method.
Basically, two things are desired: (1) the space-time solution of the line-
arized perturbed conservation equations, which yield such things as the
transient void reactivity in a nuclear reactor, and (2) an understanding of
the hydrodynamic stability. Consider one such desired result, the depend-
ent variable Aa(z,t), perturbed void fraction which is a function of time
't,' and position 'z' along the length of the channel. In the present method
Ao(z,t) is expressed as follows:

A0 = spishlE) ar s o szl e e

where the coefficients by, b;, b,, and so forth, are unknown functions of time
only, and Py, P;, P,, and so forth, are orthogonal functions of variable 'z.'
Similar expressions, of course, are used for the other dependent variables.
The nature of the problem and the boundary conditions suggest the use of
Legendre polynomials, as discussed later. The coefficients by, b;, and so
forth, are obtained by substituting the above series expansions for the un-
known variables in the equations and applying orthogonality conditions. Con-
siderable evidence is available for the convergence of the above series ap-
proximation of the solution.

The hydrodynamic stability is investigated through transfer functions
such as that between AVf(z,t), the perturbed velocity of the liquid, and
A¢(z,t) the perturbed heat flux. This is done conveniently by use of a Laplace
transformation of the time variable.

The method developed is applied to a number of specific problems.
Dependence of flow stability upon several factors such as the channel length,
the inlet pressure drop, the downcomer drops, and the steady-state heat-
flux profile along the channel, is investigated for a specific natural-
circulation loop. The problems of operating channels in parallel with a
common downcomer are also considered.

In particular, the void reactivity is investigated, since it plays an
important role in the stability of a nuclear reactor. As the z-dependence
of Aa is available in this development, one may evaluate the transient re-
activity contribution of each channel if the void coefficient of reactivity,
n(z), is given. The total void reactivity of the reactor is obtained by add-
ing the individual contributions of the channels. In many instances in the
past,(?”é) the void reactivity of the reactor was calculated by simply esti-
mating an average of Aa and the void coefficient of reactivity for the entire
reactor. Both of these methods are presented in Section IV, and the defi-
ciency of the other method is illustrated.

Results indicate that though the steam slip ratio is allowed to be
variable along a channel, in contrast to many previous investigations,(1»3»7)
little change occurs in the solution if the simplifying assumption of constant
steam slip ratio is made. It is also found that the assumption of a simple



z-dependence of the solution (i.e., one linear in Z) can introduce siz‘eable
errors. In addition, the method predicts the steady-state perturbation of
void fraction, velocity of the water, and so forth, for a step increase in
heat input to a natural-circulation loop. In general, remarkable agreen.qent
is found between the predictions made by the present method and experi-
mental observations made thus far, as well as those by elaborate digital-
computer solutions.

II. THE MODEL AND THE ASSUMPTIONS
Figure 1 illustrates the model under consideration, which consists
of a vertical reactor core, with several coolant channels, immersed in

water. A typical flow loop is indicated on the diagram.
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presentation. However, the lack of
understanding of flow patterns makes
it unrealistic to assign cross-

COOLANT CHANNEL sectional velocity distributions within

the two phases. Furthermore, the

112-3791 fact that the cross section of the
Fig. 1. Model of a Natural- channels considered is not large com-
circulation Boiling pared with the bubble size, leads to
Water Reactor the assignment of a single velocity
Vi(z,t) to the liquid particles and of
Vg(z,t) for the gas at any cross section located at a distance z from the

inlet to the channel. A single variable a(z,t) is chosen to represent the

fraction of the cross section at z which is occupied by steam. It is also

assumed that the slip ratio S = Vg/Vf does not change from its steady-

state value for small perturbations in the heat input. Nevertheless, varia-
tion of the slip ratio along the channel length is considered. The value of S
may, in general, be greater than or equal to one.



The statistical fluctuations in the heat flux, void fraction, velocity,
etc., due to the randomness in bubble formation are assumed to be at much
higher frequencies than the natural frequencies of oscillation in the system.
Processes such as the eddy diffusion of energy and momentum are consid-
ered negligible, and so are the kinetic and potential energy terms, as well
as the variation of pressure with time. Also, the terms representing the
energy loss due to expansion at the exit of the channels along with the gain
in pressure head are neglected. It is observed that this gain in pressure
head and the loss due to the eddy diffusion of momentum in the riser tend to
cancel each other in some steady-state experiments.(S) As there is a lack
of fair understanding of the latter, it is only logical not to consider just the
former alone.

Flow of heat from the wall surface to the fluid, taken to be without
an internal heat source, is assumed normal to the wall surface. Perturba-
tion of the heat flux is assumed to take place simultaneously in all channels.
Further, in each channel the perturbed heat flux of the channel may be ex-
pressed as

Nz ib)e =N (Z) NG (6)) £SO
and
A¢(z,0) = 0,

where f(z) is known and does not change with time, and C(t) is arbitrary
but Laplace transformable. However, f(z), the z-dependent factor of A,
is allowed to be different from ¢y(z), the steady-state heat flux for that
channel. This fact may be utilized with some advantage in an experimen-

tal study.

The steady-state distributions of heat flux, velocity of the liquid,
slip ratio, and void fraction along the channel are assumed to be known
through experimental observations or through some of the existing semi-
empirical computations. Surface frictional stresses are also considered

to be obtainable empirically.

All the variables considered, such as the void fraction, and veloci-
ty of the liquid, are continuous and differentiable in time and space.

The origin of the z-axis is at the bottom end of the channel, and z

is positive upwards.



10

III, FUNDAMENTAL CONSERVATION EQUATIONS*

The system to be considered is shown in Fig, 2.

A dA

= i 2 i

A2 Control Volume

4,

112-3798

A, Conservation of Mass

Consider an arbitrarily small length Az of the channel located
z units above the inlet. Let A be the constant area of cross section of
the channel, and v the volume corresponding to the length Az; let the sur-
face area be denoted by S. Let p be the density at any point in v, and ?
the velocity of the particle at that point.

Conservation of mass may be stated as,

o S Y
=% f p dv +f pV - dS = 0. (1)
v S

But
ztAz
f pdv:f / pdA | dz. (2)
v z A
Since there is no contribution from the zero velocity at the side walls,
f oV - dS = f PV, dA = f pV, dA] | (3)
S A z+Az A z
where V; is the component of {/\ in the positive z-direction.

Equation (1) may be written, after dividing throughout by Az and
taking the limit as Az approaches zero, as

RS
Derivation of these equations is similar to that by J. E. Meyer.(g)
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d e}
7y f paAl+ 3 f oV, dA) = 0, (4)
A

A

The assumption of separated flow leads to the following equations:

pdA = | pg(l-a)+ p,0fA; (5)
/A [ . g ]

f PV dA = [Pfo(l-Oc) + PngOC]A, (6)
A

where o is the void fraction, and the subscripts f and g refer to water and

steam, respectively. Substituting the expressions for f p dA and
A

f PV, dA from Egs. (5) and (6) into Eq. (4) and dividing by A, one may
A
write

) )
= [pf(l -a) + ngL] his [Pfo(l -a) + PngOL] = 0. (7)

B. Conservation of Energy

The conservation of energy may be stated mathematically for the
same volume v with no internal heat generation as follows:

a - > - -
B_tf pe dv| + pe V -dS = - ¥ - dS
v S S

=3 - > —
A (V « p)ds + O Eidv, (8)
S v
where e, the internal energy per unit mass, is given by
! 2
= h - —
&= b - P/t = VF, (9)

where h is the enthalpy, P the static pressure, p the density, V the mag-
nitude of V at any point in the control volume, ¥ the surface heat-flux
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vector, ? the force per unit area on the surface of the control volume v,
=

and { the body force vector per unit mass.

If ¢ is the heat flux per unit length of the channel and g the ac-
celeration due to gravity, Eq. (8), after performing operations similar to

those leading to Eq. (4), becomes

e} /‘ d f _6_ /
3 \J, pedA) + 37 . pTpedA) = - == A PV, dA
—gf PV, dA | + ¢. (10)
A

The assumptions made in Eq. (10) are that the heat conduction in
the positive z-direction and the energy contribution from the pressure and
shear forces operating on the side wall are negligible. Further, only the
earth's gravity contributes to the body forces.

Substitution for e from Eq. (9) into Eq. (10) leads to
) f d
S\J, oh dA E
Jaen-2 < /
5t Y s

oV hdA> =0

™ |._
o
\3’/
+
¢l
A s
\
™=
2
N
=
o
S
+
[0
\
2
[o )
[

(11)
Under the assumptions that the pressure does not vary with respect
to time and that the kinetic and potential energy terms have negligible ef-

fects, the expression in brackets on the right-hand side of Eq. (11) may be
neglected. Thus,

3—( i hdA> 2 < [ >
e + = PV, h dAa) = ¢,
ot \J, 3z \J, (12)

Using the assumption of separated flow, one may write

PhdA:A‘:ph(l- ]
[{ thi(l - @) + pghoa (13)
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and

f AV,h dA = A [pfhfvf(l-a) + pghgvgoc], (14)
A

Substitution of Eqs. (13). and (14) into Eq. (12) and division throughout by
A yields

9 9
5‘; [pfhf(l -a) + pgthL:ll i g [Pfthf(l -a) + pghgvga] = ¢'/A (15)

C. Conservation of Momentum

The equation for momentum balance for the length Az is written to
express the incremental pressure drop for this length. Integration along
the entire channel would yield the channel pressure drop to which the entry
and exit drops may be added. The resulting expression may be a constant
in a forced-circulation system (see Ref. 1). In a natural-circulation sys-
tem, the pressure drop around a closed circulation loop (a typical loop is
indicated in Fig. 1) is equated to zero. This is one of the boundary
conditions.

The momentum balance for the control volume v may be stated as

gazf pv‘dv+f (px‘?)v‘-d§=f§ds+fp'5dv. (16)
S S

v

The pressure drop is considered constant across any cross section
normal to the z-axis, that is, P = P(z). Hence, the first term on the right-
hand side of Eq. (16) may be written as

z+Az ik ztAz
f p dS = _(pA)Z+AZ+ (PA)Z+/ ( d—z> dz -f <f T dl)dz,
z WE

S Z

where WP is the total and df the incremental wetted perimeter, and 7 the
frictional force per unit of the wetted surface. Since the channel has con-

stant area of cross section, dA/dz = 0.

The second term on the right-hand side of Eq. (16) represents the
body force per unit mass of the control volume. If it is assumed that this
force is due only to the earth's gravity, one may write
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fv pE dv = -LZ+AZ<fA Pg dA>dz. (18)

Hence, the conservation of momentum expressed by Eq. (16), after
making substitutions through use of Eqgs. (17) and (18), dividing throughout
by Az, and taking the limit as Az tends to zero, may be restated as

-5— f PV, dA +a_a'z' f pV% dA :-Ag—f—f ’le—gfpdA.

A A WP A

o+

(19)
The pressure drop per unit length due to surface friction of the wall,
f T d/, is empirically evaluated by assuming the drop to be entirely due

WP
to water, Specifically, it is assumed that

7w T db = KVi, (20)
WP

where Kf is empirically obtained. (See Ref. 7 for an experimental justifica-
tion for this type of evaluation of the two-phase friction pressure drop.)

Again, the assumption of separated flow enables one to write:

f PV, dA = A [pfvf(l - o)+ nggOL]; (21)
A
f BN G = A [pfv%(l -a) + ,ogVZgoc:I; (22)
A
/{; N A= A[pf(l -a) + pga:l, (23)

W Upon substitution of Egs. (20), (21), (22), and (23) into Eq. (19), and
dividing throughout by A, one obtains

oP

sollaby 2 )
e Sl [Pf(l -+ Pga]g v [Pfo(I -a) + pgvga] + -a%[pfvﬁ(l -a) + pgvzgo,],

(24)
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Equations (7), (15), and (24) give the nonstationary equations of conserva-
tion of mass, energy, and momentum in one-dimensional space.

IV. DEVELOPMENT OF AN APPROXIMATION PROCESS FOR
THE SOLUTION OF THE CONSERVATION EQUATIONS
WRITTEN IN THE LINEARIZED PERTURBED FORM

The response of the two-phase flow to small changes in the heat
flux may be obtained from the solution of the linearized perturbed form of
the conservation equations about a steady operating point. With this in-
formation, one may also predict the stability of the system for small dis-
turbances. By utilizing the technique of small perturbations about some
steady-state operating condition, the variables may be expressed as follows:

B(z,t) = Po(z) + Ad(z,t); (25)
Vi(z,t) = Vg(z) + A7 b)) (26)
a(z,t) = op(z) + Aa(z,t), (Z7)

where the first term on the right-hand side of each equation is the steady-
state term and the second term is the perturbation in the corresponding
variable.

Let it be assumed that the velocity of steam may be expressed as

V,(z,t) = S(z)V(z,t), (28)

g(

where S(z) is the slip ratio along the channel and is assumed not to be a
function of time for small perturbations in power. The value of S(z) is
assumed to be available from steady-state information.

A. Linearized Perturbed Form of the Conservation Equations

By substituting Egs. (25), (26), (27), and (28) into the conservation
Egs. (7), (15), and (24), performing a Laplace transformation in time, and
eliminating the steady-state, second-, and higher-order terms, the following
is obtained:
N OAV¢
s(pg- pf)Aoc - (pgS— Pt} 32 [% AV, + Vfvoc] + g3

9AVs  gs :
e as f’g[%”f* Vf°A“} 5t A



. ]
\ * — AV .+ V@
S(Pghg— pfhf)Aowr (S,Oghg Pfhf) oz [% Vit Vio

OAVf ds A 30
b5 gt ST o ol | SR VB VR U S e
0AP
iy = 2KV AV + g (Pg- Pf)Aa

T s[Aoc(Sngfo— prfo) i AVf(Spgao— pfoto) T pfAV{I

)
e [Aa (sng\z%o = pfvﬁo)

+ ZAVf(SZ PgV £l - pfvfoao) +2 prfOAVf]. (31)

In these equations s is the Laplace transform variable, and Aa, AV, and
A ¢ are functions of z and s. Equations (29), (30), and (31) represent the
linearized perturbed form of the conservation equations. It is assumed
that A may be expressed in the following form:

Agp = £(z)C(s), (32)

where f(z) is continuous and differentiable and is known, and C(s) is the
Laplace transform of C(t).

The perturbation in ¢ is assumed to occur at time t = 0.

Equation (31) may be integrated along the channel to obtain the
perturbed pressure drop in the channel to which the perturbed pressure
drop at the inlet, exit, and the downcomer may be added to obtain the
perturbed pressure drop around a closed loop which is equated to zero.
This is one of the boundary conditions, The second boundary condition is
that AQ is equal to zero at z = 0 for all time t, because the inlet water is
at saturation temperature and heat addition begins only from the inlet.

The problem now is to solve Egs. (29) and (30) with the above
boundary conditions to obtain Aa and AV¢ as functions of both z and t for
any arbitrary C(t).

The procedure which shall be followed is to expand AVy and Aa in a
series of orthogonal functions of the independent space variable with the
coefficients as unknown functions of time. These coefficients are then
evaluated by the application of the orthogonality conditions and the existing
boundary conditions. Although many functions are available, the Legendre
polynomials appear to be the most convenient for several reasons,



First, a linear transformation of the space variable from z to x
is desired, where 0 = z =L and X, < x =< x;; the interval (x,,x;) is the
region of orthogonality of the function chosen with a simple weighting
function if possible. 'This facilitates the application of the orthogonality
conditions and the partial differentiation with respect to z in the con-
servation equations, Therefore, functions such as Laguerre polynomials
would not be ideal.

Secondly, since a and V¢ are quite smooth along the channel, the
use of Fourier Series expansion may not be efficient. Moreover, the lo-
cation of the extremum of o or V¢ along the channel will involve the solu-
tion of transcendental equations, which is not a desirable feature.

Considering the above factors, two sets of polynomials, the
Legendre and Radau,appear promising, The Radau polynomials, however,
would give difficulty since AVy is not equal to zero at the inlet whereas
Aa is, But for this fact, the Radau polynomials might be the most efficient,
One is led, therefore, to consider the Legendre polynomials as the most
desirable. It should be noted that there is an advantage with the Legendre
polynomials in that the weighting function introduced for the orthogonality
conditions is unity.

The following linear transformation in z is made to obtain a
variable x varying from -1 to +1 in order to apply the orthogonality
conditions:

oo

z

=L (33)

=

Then AV; and Aa are expressed as follows:
NI =R R (o) e R ()t (34)
NGB b by Bilx)Eh by Pyl i (35)

With the change of variable z to x according to Eq. (33), Egs. (29),
(30), and (31) are modified as follows:

) \ 2|
S (,og— ,Of)AOL + (pgs = pf> = L%AVH VfOAO(,]

BAVf ds ll_ ]
+ pPs ’a_X o5 e PgLVfOAOL +agAVe | = 0; (36)

117
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L B i Aa]
8= (pghg- pfhf)Aoc i (pghgs— pfhf) 5% [OCo Vet Vi

+ phy 5§_Zf + g Pghg [VfOAoc Loty Avf] E i £(x)C(s); (37)
- BaA__f_ = LK{V AV +Z£ g (pg- pf)Aoc
. 25 - [(VfvocmoAVf) (pgS 3 pf) o pfAvf]
+ 'a% [AOLV%O (pgs?- ps) + 2Vio%0 (pgSZ - pg)avy + prvfoAvf].
| (38)
The fact that Ao = 0 at x = -1 is stated as follows:
el = 1950 A0 i = oy 4 o o = (0 (39)
The steady-state quantities are expressed as
Vit = AR BA ) () A B ()t e (40)
g = By + B1P;(x) + BP,(x) + .. .; (41)
8 = Gy SR s S (42)

where the coefficients are obtained through a curve-fitting procedure ap-
plied to the steady-state spatial variations of V 0 @ and S by means of
the minimum-mean-square-error criterion,(10§ The space-dependent part
of Agp, namely, f(z), is assumed to be expressed in the form

f(z) = cot Pi(x) + c;P,(x) + .. ., (43)

where ¢y, ¢, etc., are known,

To obtain the transient solution desired, it is necessary to solve
for Ao and AVy. This is accomplished by an approximation procedure.

B. Procedure for the First-degree Approximation

A first-degree approximation in z, and hence in x, may be made
for AV¢ and Aa as follows:



AVg = ag + a,Py(x); (44)
Aa = by + byPy(x). (45)

The expressions for the steady-state quantities, and for AV¢ and Aa given
by Egs. (40) to (45) are substituted in Eqgs. (36), (37), and (38). There are
5 unknowns, namely, ay, a;, by, b;, and C. The two boundary conditions,
and the integration of Egs. (36) and (37) in x between the limits -1 and +1
after they have been multiplied by Py(x) (orthogonality conditions) give rise
to 4 independent equations in the independent variable s. Hence, the ratios
ao(s)/C(s), al(s)/C(s), bo(s)/C(s), and bl(s)/C(s) may be readily evaluated
as functions of s. These are called the transfer functions. If C(s) is speci-
fied, the s dependence and hence the time dependence of a;, a;, by, and b,
may be obtained. It is to be noted here that C(s) becomes known when a
particular perturbation in the heat flux, A¢(z,t), is specified.

C. Procedure for the Second-degree Approximation

If a second-degree approximation in z is required, AV¢ and Aa are
expressed as

AVy = ag + a;P(x) + a,P,(x) (46)
and
AR =y b, By () b, P, () (47)

It is readily observed that there are 7 unknowns. The boundary
conditions yield 2 independent equations. Further, each of the Egs. (36)
and (37) are multiplied by Py(x) and P;(x), and integrated over x between
-1 and +1 (orthogonality conditions) to generate 4 more independent equa-
tions, Therefore, the ratios aO/C, al/C, aZ/C, bo/C, bl/C, and bZ/C may
be evaluated.

One may thus readily proceed to approximations of higher degree
for AV¢ and Ao in the above systematic manner. A detailed illustration of
this approximation procedure is given in Appendix A.

At this point, two very important results which follow directly from
the present method are obtained.

D. Oscillatory Nature of the Solution for Aa in Space

From the solution Aa(x,s) one may locate the point xy,(s) at which
Aa(x,s) is an extremum. This may be demonstrated for a second-degree
approximation as follows. From Eq. (47) we find that
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dafx,s) _, d ol
Ox = Bum Brh bl
bt d 1 g 5y
=b o (x) + by P I:Z (3x I)J
= by + 3byx. (48)

To find the location of the extremum of Aa along the channel, one
may equate aAot/ax to zero; we thereby obtain

= (2= oobyls)/3 (). (49)

One may infer from Eq. (49) that the location of the extremum of the tran-
sient void fraction may, in general, vary during transients. Hence, it may
be concluded that the spatial distribution of Aa also undergoes spatial oscil-
lations. Such an oscillatory nature of Aa cannot be obtained by a linear
spatial approximation of Aa, but only by a second- or higher-degree ap-
proximation. The need for the present method thus becomes evident.

E. Void Reactivity Feedback

In a boiling water reactor, reactivity feedback occurs due to the
formation of steam bubbles in the coolant channels. In a transfer-function
analysis of the system, knowledge about the feedback transfer function
resulting from the transient void formation in the channels is necessary.

The present approximation procedure enables one to obtain Aa(z,s)
given A@¢(z,s) in any channel.

Given 7)(z), the reactivity worth of void along the channel, one may
evaluate the reactivity feedback AKgp(s) due to that channel as follows:

L
AKgp(s) :/ Aa(z,s) 1(z) dz. (50)

0

This kind of evaluation was not possible in the past approaches
except numerically, because Aa(z,s) was not known analytically. In many
instances in the past, AK(s) was computed from the knowledge of Aas),
the average of Aa(z,s), and 7], the average of 7(z) along z as

Abe(S) = L?T)A—CL(S) (51)

The following example illustrates the inadequacy of the previous
method. The error introduced in AKfp(s) by the previous method would,
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of course, vary with the z-dependence of Aa(z,t) and 7(z). Using the trans-
formation of z to x defined by Eq. (33), and expanding Aa(z,t) and 7(z) in
a series of Legendre polynomials, we obtain

MR =N o Bt Vo P, el (52)
where V,, Y, Y2, etc., are known constants and

Aa(x,s) = bg(s) + by(s) Py(x) + by(s) Palx) + .. .. (53)
Thus Aa(s) = by(s); and ;= lo:

Using the present method, we find

Sl T
AKgp(s) :f Aa(x,s) n(x) = dx
-1

L el
Z_f [bo + b P (x) + B (Ca)lar . :l
-1

[70 75 'lel(x) i 'Ysz(X) F A ] dx

]

B b
= L[bovo+—‘3—‘ +—25—5+..]. (54)

According to the previous method,

AKgp(s) = LAa(s)n = LbgYo. (55)

Comparison of Egs. (54) and (55) illustrates the possibility of error
in the estimation of AKgp(s) by the previous method.

The transfer function AKgp(s)/C(s) may be written by use of Eq. (54)

as
Abe(S) bo(s) LV, by(s) L7, b,(s)
gL e T el 5 ocl) (56)

The right-hand side of Eq. (56) has a common denominator |A(s)| accord-
ing to Eq. (A-34a) of Appendix A, Therefore, AKgp(s)/C(s) may be readily
computed to obtain the feedback reactivity transfer function due to one
channel, The other channels may also be treated similarly, and the results
are added to obtain the overall reactivity feedback transfer function of the
entire reactor. In many cases, it is enough to divide the core into 2 or

3 regions and assign just one A ¢(z,s) for each region. All the coolant
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channels in that region would then be associated with a single A¢(z,s). In
this way, when there are many coolant channels in a core, AKsp(s) for all
those many channels need not be calculated separately. The number of

regions would, of course, depend upon the spatial distribution of heat flux

and the required accuracy of the result.

It is assumed in the above that C(s) is common to all the channels,
In other words, the change in the heat flux occurs simultaneously in all
channels. This is true only if the change in the heat flux corresponding
to a change in the thermal neutron flux in the reactor is delayed equally
for all channels. This delay is due to the time taken for the heat to flow
through the fuel element, cladding, etc.
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V. DEMONSTRATION OF CONVERGENCE

The method of series approximation developed in the previous sec-
tion is useful only if the series converges fast enough for practical appli-
cation. It is necessary, therefore, to demonstrate convergence, although
an absolute proof of convergence is not available at the present time. One
may note that it is necessary that the solution converge in both space and
time.

The following is chosen as an example of the system (FPS system
of units is used). A natural-circulation loop with a single-heated channel,
and a downcomer is considered. The channel has a diameter of 1 in. and
is 4 ft long. The downcomer has a diameter of 6 in. and is 4 ft long. The
steady-state condition is specified by the conditions

Vg, = 5.65 + 2.25 Py(x);
ay = 0.325 + 0.325 P,(x);
S = 1.8.

The above simple space dependence of the steady state is chosen
to illustrate the fact that the z dependence of the transients may be very
different from that of the steady state.

The perturbation in heat is described below. We take
=)=

C(t) is a unit step function, so that
GlE) = l/s.

A. Convergence of the Major Pole Locations

To demonstrate convergence in time, the transfer function ao(s)/C(s)
is considered. Table I gives the pole locations for the various approxima-
tions of ao(s)/C(s). Table I clearly shows that the pole positions converge.
The major poles have converged to approximately -3.77 0N 35 Tile
higher-order approximations introduce poles whose real parts are consid-
erably more negative than that of the major poles. It is found that the
residues of all the poles have the same order of magnitude. Therefore,
the time response is essentially dictated by the major poles.
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Table I

POLE LOCATIONS

Degree Number
of of Locations of Poles: 0 + jw*
Approximation Poles
1 2 -3.451 * j3.141
2 3 53 B0 25 5,00 =t G
3 4 =3 758t SR A OHER- R B EEg 5 oI
4 5 =3 750 350 = 10T 408 2 8s B
-13.78
5 6 =5 T 2= 5 Bl =) B == il Sak
~i8 = 22 Ol

* g has the unit of sec™?.

W has the unit of rad/sec.

B. Convergence of the Residue of a Major Pole

The convergence of the residue of one of the major pole pairs (the
residue of the second is the complex conjugate of the first) is illustrated

in Table II.
Table Il
RESIDUES OF THE MAJOR POLES
Degree Residue of the Major Poles
of
Approximation Magnitude Phase Angle, deg

1 0.83 +t244.7

2 1.406 EpiERS

3 2513 205

4 2.208 a0

5 2.2:1 £206.7

C. Convergence of the Initial and Final Values of Response for a Step
Increase in Heat Flux

The initial and final values of ag(t) for the perturbed heat input
specified before is given for the various approximations in Table III, The
convergence is obvious. This completes the demonstration of convergence
of a; in time.



ESTIMATION OF THE INITIAL AND FINAL VALUES

Table III

Degree of Initial Value Final Value
Approximation of ap of ap
Il 0.0382 0.1429
2 0.0391 0.2420
3 0.0386 0.2441
4 0.03856 0.2456
5 0.03855 0.2458

D. Convergence in Space

Convergence in space may be demonstrated only by showing that
the space distributions of Aa and AV, approach a particular shape at any
particular instant since the spatial variation also changes with time. The
magnitude of such a project does not make it feasible. Therefore, con-
vergence will be demonstrated only for one point in space and time,
namely, the location of the extremum of Aa after the transients due to a

step increase in heat flux have decayed. This is shown in Table IV.

Table IV

LOCATION OF THE EXTREMUM OF Aa
ALONG THE CHANNEL AFTER
TRANSIENTS HAVE DECAYED

Degree of
Approximation

Location of
Ao Max-steady State,
ft above the Inlet

G W N =

11, (0

0.683L
0.623L
0.614L
0.616L

25
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VI. APPLICATION TO SPECIFIC PROBLEMS

Several important questions connected with the dynamics of two-
phase flow through heated boiling channels are now considered. In many
instances, experimental data and digital-computer solutions are available
to compare with the solutions predicted by the present analytical approach.

A. Dependence of Stability upon Steady-state Conditions

It is found for small perturbations that the stability and transient

behavior of a single-channel natural-circulation loop depend upon the
steady-state distributions of velocity and void fraction along the channel.

(6,11

One may note that these in turn mainly depend upon the total heat flux of the

channel and the form in which heat is distributed along the channel.

For any

given steady-state heat distribution the corresponding distributions of the
void fraction a,(z), velocity of water Vg(z), and the slip ratio S(z) can be

obtained using the digital computer program "CHOPPED."(IZ)

The par-

ticular steady-state condition that will be considered is for a pressure of
600 psig and inlet water at saturation temperature.

The function a o(z), Vgo(z), and S(z) were computed for the channel
at 3 different steady-state heat fluxes, namely, 20 and 80 kW/liter (the
internal volume of the channel) distributed uniformly, and 80 kW/liter

distributed linearly (zero at the inlet).
the corresponding steady-state conditions.
polynomials used to fit the curves 10)

Table V.

Figures 3a, b, and c illustrate
The coefficients of the Legendre

in Figs. 3a, b, and c are given in

It is found that the solution converged reasonably well by the third-

degree approximation in z.

The locations of the major poles that dictate

the stability and transient behavior corresponding to the three different
steady-state conditions are indicated on Fig. 4.
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Fig. 3a. Variation of Void Fraction
along a Channel

112-3792

Fig. 3b. Variation of Velocity of
Water along a Channel
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Table V
COEFFICIENTS OF LEGENDRE POLYNOMIALS
S i |80 kW/hter, 80 kW/hter, 20 kW/hter,
Uniform Linear Uniform
i B, 0.28 0.29 18
FOi" 4 B, 0.25 0.29 18
e B, -g,10 0
A, 6.01 4.90 4.40
;?0(")% A, 2.02 1.81 0.71
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One may infer from Fig. 4 that the stability in the case of linear
distribution of heat is more than that in the case of uniform distribution
of the same 80 kW/liter of total heat flux. It may be observed from
Fig. 3a that there is more void (i.e., more steam) along most of the chan-
nel in the latter case. This may be one of the reasons why the latter is
less stable. From Fig. 4 it is also clear that the stability in the case of
20 kW/liter distributed uniformly is more than that in either of the two
cases mentioned above. This, indeed, is in agreement with the present
belief that increase in power input does make the channel less stable.
However, it should be noted that this is not always true, because of the
fact that the distribution of heat along the channel also influences stability.

It has been a usual assumption in past approaches that the slip
ratio is a constant all along the channel. The present method takes the
z-variation of the slip ratio into account. The
L AEETCS 1 major pole locations for the case of 80 kW/
Ll | & |1 \%1 Al liter of heat distributed uniformly are plotted
SR A ' 8 in Fig. 5, along with those obtained by neglect-
= A L ing just the z-variation of the slip ratio. One
may readily observe from this figure that the
error introduced in the prediction of stability

lll|‘r[]||'°

1
(o]
[ ]

L L o) J
with the assumption of a constant slip ratio is
small for each approximation, provided the
average value of the slip ratio is taken as the
constant value in the mass and energy balance
Eqgs. (14) and (16).

W, rad/sec

a i B. Effect of Channel Length upon Dynamic
Behavior

g, sec”! To study the effect of channel length
upon dynamic behavior, three different lengths,
namely, Iui=2, '3, and 4 ft, of alnatural=
circulation loop were considered. It was as-
sumed that the steady-state distributions of
void fraction, velocity, and the slip ratio were
identical in each case. (This, of course, im-
plies that the channels have different steady-
state heat flux distributions.) The values of Ag, Ay, By, B, etc., were

obtained from Table V, corresponding to a channel, 4 ft long, with a uni-
form heat flux of 80 kW/liter.

112-3655

Fig. 5. Major Pole Locations
Corresponding to Var-
ious Approximations

The major pole locations for each of the above cases (third degree
approximation in z) are plotted in Fig. 6. It is evident that an increase in
length makes the system less stable. This conclusion is in agreement with
the experimental observations of Meyer et a1.(2)
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C. Prediction of the Steady State after the Transients

Example 1: The transfer function, A o (x,s)/C(s) may be utilized to
predict the steady value of the perturbation in the void fraction at any point
along the channel after the transients have died out. The system considered
here is the same as that in Part A of this section. Eighty kW/liter of heat
were assumed to be distributed uniformly along the channel. The perturba-
tion also was taken to be uniform in z and to be a step function in time.
Therefore, A¢had the form

Ap(x,s) = co(l/s).

The steady value of the perturbation in the void fraction at the exit
may be obtained by applying the final value theorem to the transfer function

Ao(1,s)/C(s) as given below:

29



If a third-order approximation is used, one may write

b (5) b (5) bz(s) b3(s)
L i = o) e e

t=c0 s=0

The transfer functions by(s)/C(s), etc., are given in Appendix A.

For the steady state Aa at the exit was calculated for a perturba-
tion of +30 kW/liter of total heat flux (uniform in z). This was also ob-
tained from the steady-state computations assuming the total heat flux at
110 and 80 kW/liter, and subtract-
ing the exit void fraction at 80 kW/
liter from that for 110 kW/liter.
The present method gave a value of
0.09, and the results of the steady-
state computation gave 0.07 for Aa.
This discrepancy is mainly due to

U A R R

o o

°

A

the nonlinearity in the exit void frac-
tion. Figure 7 shows the variation
of the steady-state exit void fraction

A 1

STEADY STATE EXIT VOID FRACTION

°

STEADY STATE INLET VELOCITY, ft/sec

e P e o 5 8 A5

=l
0 0 20

e oo e e ke with power. If a linear extrapolation
in a is made at 80 kW/liter to obtain
Wl 2 ST Ao between 80 and 110 kW/liter, one
may readily see that the extrapolated
Fig. 7. Variation of Exit Void result is bound to be more than the
Fraction and Inlet Ve- actual, considering the large size of
locity with Heat Flux the perturbation.

As the perturbation of the heat input in the above example was
rather large, a second example was considered in which a smaller value
for the perturbation,only 10 kW/liter, was taken. Perturbation in the exit
void fraction was calculated for +10 and -10 kW/liter by the present meth-
od to obtain that between 70 and 90 kW/liter. This perturbation was also
obtained from the steady-state information in Fig. 7. The values obtained
for Aa were, respectively, 0.06 and 0.05.

At this point, one may note that the steady-state distributions of
@, V¢, and S along the channel are expressed through the coefficients A,,
Ay, By, B, etc., obtained through a curve-fitting procedure as mentioned
before. An exact fitting is impossible with a limited number of orthogonal

polynomials, and some error therefore is introduced. Further, the steady-

state computations are semi-empirical. Considering these facts, one may

conclude that the small discrepancies in Aa in the above examples are
quite reasonable.
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Example 2: The transfer function AVf(x,s)/C(s) may be used to
evaluate the steady-state perturbation of the circulation velocity (inlet ve-
locity). The system considered was the same as in Example 1.

Figure 7 illustrates the variation of the circulation velocity with
power. Such a variation has been observed in many past experiments.(3;6)
Consideration of the bigger nonlinearity of this curve led to the choice of
a small value for ¢y, namely, +10 kW/liter.

At 80 kW/liter of heat input, the curve is almost flat. The small
slope is negative. The steady-state perturbation in the circulation velocity
corresponding to the above perturbation in the input was found to be
-0.04 ft/sec. The predicted value due to the transfer-function method was
-0.01 ft/sec. Because the magnitude of the velocity perturbation at this
power is so small, the inherent errors make any comparison between the
two values meaningless.

At 20 kW/liter, the curve has a finite slope. Figure 7 gives the
value of the perturbation at this power as +0.23 ft/sec; the predicted value
was +0.25 ft/sec.

D. Effect of Pressure Drops in the Downcomer and at the Inlet to the Chan-
nel on Stability

The stability of the single-channel system described in Part A of
this section, with a heat flux of 80 kW/liter distributed uniformly, was in-
vestigated with the following modifications.

1. The acceleration pressure drop in the downcomer was increased
to 50 s(ag-a; +az- a;). This may be done by suitably increasing its length or
decreasing its diameter (see Appendix A).

2. The perturbed pressure drop at the inlet was increased to
200(ag- a; +a,% a;), by introducing a constriction before the inlet (see
Appendix A).

Figure 8 gives the variation of the location of the major poles of
the system due to the above additional pressure losses in the momentum-
balance equation. It may be observed from this figure that presence of
these pressure drops does increase the stability of the system. It has been
observed in the past that increase in inlet drop leads to improvement of
stability of steam boilers and test loops. The predicted effect of downcomer
acceleration on stability is yet to be confirmed experimentally.



R T T e E. Parallel-channel System with a Common
Downcomer

A system consisting of two heated chan-
nels, each 4 ft long and with a diameter of 1 ins,
operating in parallel with a common downcomer
was considered. The downcomer was assumed
to have variable length and diameter in order

to permit variation of the acceleration pres-
L& T L sure drop in it. A constriction may be intro-
[ INCREASED INLET PRESSURE duced at the bottom of the downcomer in order
[ i to increase flow resistance. This system

rad/sec

O NO ADDITIONAL PRESSURE DROP

JW,

__ 2 s was studied in order to understand the effect
| _: s of coupling between the flows in the two chan-
L m @ J nels due to the presence of a common

| o [ 2 S| downcomer.
-8 -6 = 5;:4», -2 0

To obtain the transient behavior of a and
112-3788 Vf, one has to solve the conservation equa-
tions pertinent to both the channels simultan-

Fig. 8. Major Pale Locations eously. The unknowns: a,, a;, by, b;, etc.,

o the Bffect of Brs corresponding to both channels appear in the
ternal Pressure Drops momentum-balance equations due to the com-
on Flow Stability mon downcomer.

The system considered was in many respects similar to an RLC
electrical network with two current paths having mutual impedance (mu-
tual resistance and inductance).

It was assumed that the perturbations in the heat fluxes of the two
channels were in phase. However, the z-variation of A¢p need not be the
same along the two channels. The z-variation of ¢, may also be different
from that of A¢ along the channels. However, in the specific system con-
sidered, the z-variation of ¢, and A ¢ of each channel was assumed to be
uniform. The total heat fluxes were taken to be 80 kW/liter for one chan-
nel and 20 kW/liter for the other in the steady state.

Figure 9 shows the locations of the major poles when the coupling
was chosen to be small (corresponding to a downcomer length of 4 ft and
diameter of 6 in.). These poles essentially coincide with those of the
individual channels operated separately. One may say, therefore, that in
the case of a boiling water reactor, if the downcomer and the perturbations
of inlet pressure drop are small, the coolant channels may retain their
individual characteristics insofar as the transient flow is concerned.

When the pressure drop due to acceleration in the downcomer was
increased to 50 s(ap-a; +a,-a; + a} - aj + ap-aj)* and that at the constriction

*p o ; :
Primed symbols correspond to the unknown coefficients of the second channel and the unprimed symbols
to those of the first.
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increased to make the total friction pressure drop (perturbed) in it equal

to 200(ag -a; + a,-a; + a - a} + aj - al), the coupling between the two chan-
nels was increased. The coupling due to the former pressure drop is called
"acceleration coupling! that due to the latter "friction coupling." The reader
is referred to Appendix A where the equations are shown in detail.

One may observe the shifting of the poles due to each of the above
modifications in the downcomer pressure drop in Figs. 9 and 10. From
this one may conclude that the dynamic behavior of the two channels are
similar to that of the electrical network.

S LSRR TR (e : o R P [ 8
IE (0] il T A 20 kW/liter o
= a =\ | [ 80 kw/liter m} il

O ACCELERATION

I 9 - COUPLING (o) 4
— o —u = — v
L A 4 - A s
F— A 20 kw/liter — 2 = — 2
| [ 80 kw/iiter ol 55 | | “

O FRICTION COUPLING & 5

oS o——=0" o 3

- /il 3 L | 3
|— — -2 |— — -2
r A b o A 4
= (e} ==y LS =1
= E = O -
= — -6 — o — -6
L @ = | L 4

L | 1 I 1 l L | 1 8 1 | 1 I 1 | 1 | 1 8
-10 8 6 -y 2 0 -10 -8 -6 -y 2 0

g, sec” o, sec”!
112-3796 112-3795
Fig. 9. Major Pole Locations with and Fig. 10. Major Pole Locations with and
without Friction Coupling without Acceleration Coupling

VII. DISCUSSION AND CONCLUSION

An important observation due to the present method of solution of
the linearized perturbed form of the conservation equations is that during
transients, the z-dependence of both void fraction and velocity is nonsta-
tionary. The transient void fraction undergoes damped spatial oscillations
before its steady-state distribution along the channel is attained. This
nature of the solution was also obtained by J. E. Meyer e_t_at_l.,(2v4) as a
result of solving the equations numerically. It was shown previously in
Section IV that this conclusion is of special importance in boiling water
nuclear reactors in that the spatial oscillations of the void fraction directly
influence the transient void reactivity.
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Figure 5 and Tables I-IV show that a sizable difference exists be-
tween the solution obtained by the first-degree approximation (z-dependence
of Ao and AV, in the first-degree approximation is linear) and those by
the second- or higher-degree approximations. One may also observe that
the discrepancy is a maximum between the first- and the second-degree
approximations, and that the higher-degree approximations converge.
This may be explained by the fact that in the first-degree approximation,
the form of the solution is considerably restricted. Further, one may ex-
pect error in the time dependence of the solution when it is derived by
forcing an erroneous preconceived form for its z-dependence.

The study of the parallel-channel system in Section VI, E has led
to the conclusion that in the case of a natural-circulation boiling water
power reactor one may neglect the coupling between the channels and
treat the stability of each channel individually. This is because in a re-
actor of usual design, the cross-sectional area of the downcomer is large
and its length nearly equals that of the channels; consequently, the accel-
eration and friction pressure drops in the downcomer are negligible.

The dynamic behavior of two-phase flow in a channel having neg-
ligible coupling with the channels operating in parallel is found to be es-
sentially dictated by the steady-state distribution of void fraction and
velocity of water along the channel. One may observe that a given total
quantity of heat flux distributed in different forms along a channel es-
tablishes different steady-state conditions. Hence, the corresponding
dynamic behaviors are also different. This was shown by the example
in Section VI, A.

Figure 6 indicates that the length of the channel strongly in-
fluences the dynamic behavior. For the same steady-state distribution
of void fraction and velocity, the oscillations in a shorter channel are at
higher frequencies than those in a longer channel. The damping factor
decreases with length; consequently, one may conclude that the longer
channels are more likely to be unstable. An experimental confirmation
of this fact may be found in Ref. 2.

It has been observed in the past that the introduction of a constric-
tion at the inlet to a channel, in order to increase the inlet pressure drop,
has a tendency to stabilize the flow. A theoretical verification of this was
found in Section VI, D. Further, the present analysis shows that the ac-
celeration pressure drop in the downcomer also stabilizes the flow. In-
creased acceleration pressure drop in the downcomer may be achieved by
increasing its length or by reducing its cross-sectional area, or both. An

experimental confirmation of this predicted effect of acceleration pressure
drop in the downcomer is desirable.



It is noted once again that the present approximation procedure is
applicable to both natural- and forced-circulation systems. If in the latter
case a constant pressure drop exists between the inlet and exit of the chan-
nels, one of the boundary conditions would then be that the sum of the per-
turbed pressure drops at the inlet, along the channel, and at the outlet is
equal to zero. In the analysis of a natural-circulation system, however,
the perturbed pressure drop in the downcomer also has to be taken into
account.

In the present analysis, the z-dependence of A¢(z,t), the perturbed
heat flux, is not restricted to be the same as that of ¢,(z), the steady-state
heat flux. This gives additional flexibility to the design of an experimental
setup to study the transients.

Finally, it is stressed that although the several results and con-
clusions obtained through the present analysis are valid only within the

realm of the assumptions made in Section II, they are applicable in many
practical cases of interest.

VIII. SUGGESTIONS FOR FUTURE WORK

A. A System in Which Subcooling is Present

In a boiler or a boiling water reactor, the makeup water introduced
may be below saturation temperature. Therefore, the inlet water to the
channels may be several degrees below saturation temperature. Conse-
quently, boiling does not occur right from the inlet, and a portion of the
length of the channel may have subcooled liquid.

The present analytical method cannot be applied directly in the
presence of subcooling because the approximating expression for Aa be-
comes unrealistic. This is because a, and Aa are both equal to zero in
the entire nonboiling portion of the channel. The series approximation of
Aa is applicable in the boiling portion of the channel. However, Lb’ the
boiling length, becomes a function of time during transients and therefore
would introduce another unknown in the equations.

It is suggested that the more general case including subcooling be
treated analytically by writing the conservation equations involving a set
of different unknowns, namely, the average density p(z,t), the mixing cup
enthalpy of the fluid, H(z,t), and the mass flow rate per unit flow area,
G(z,t). The functions a(z,t), V(z,t), and Vg(z,t) may be indirectly obtained
from the solutions for the new unknowns.

The conservation equations which describe the flow in a channel
may be written as follows (these equations are derived in detail T I 137
Meyer in Ref. 9):
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Energy:
R SO
P g v G'a—z— o ¢ ) (57)
Mass:
P 06 _, (58)
ot 0oz ’
Momentum:
oG eaee . EIsE el 59
pelh S 5z ~ 2D (3%
In these equations:
1. Slip-flow effects are represented by use of the macroscopic

quantities 5, v', and p" which are assumed to be functions of mixing cup
enthalpy H for a given pressure and are evaluated by steady-state

experiments:
pU = Fy(H); (60)
ﬁ = FZ(H); (61)
= () (62)
2. All fluid properties are evaluated at some reference pressure.

Therefore, in Egs. (57) to (59) the unknowns are only G(z,t) and
H(z,t).

The linearized perturbed form of Eqgs. (57) and (58) may be
written after substituting for p" and P from Egs. (60) and (61). The per-
turbed form of Eq. (59) is integrated along the channel to obtain the per-
turbed pressure drop in the channel. The perturbed pressure drop in the
rest of the flow loop may be added to this and the result equated to zero
to obtain one of the two boundary conditions. If the inlet water is assumed
to be at constant temperature (not a very restrictive assumption at all),
one may obtain the second boundary condition: H = 0 at z = 0 at all times.

The advantage in making H and G the unknowns is that they
would usually be continuous functions of z even when subcooling is present.
If it is further assumed that



where f(z) is known, then, in principle, the present approximation pro-
cedure can be applied directly to solve for AH(z,t) and AG(z,t), given any
Laplace transformable C(t). The functions Aa(z,t), Ap(z,t), etc., may
then be obtained through AH and AG. Using AH(z,t), one may also derive
the time variation of the boiling length during small transients.

B. Experimental Program

1. The effect of steady-state heat-flux distributions along the
channel discussed in Section VI, A needs further experimental confirma-
tion. This experiment may be facilitated by using the fact that in the
present analysis the axial profiles of the steady-state and perturbed heat
fluxes may be different.

2. The effect of acceleration pressure drop in the downcomer
(increasing acceleration pressure drop is equivalent to increasing inertia
to the fluid flow) has the effect of stabilizing the flow, as was shown in
Section VI, D. This needs experimental confirmation,

3. Until now it has been virtually impossible to measure realis-
tically the amount of steam in a channel during transients. With the de-
velopment of the present method, it is only necessary to measure the
value of o, at any given location to verify the spatial distribution of a (z,t).
Obtaining the total steam void is then a simple matter of integration of
this function in z. Performing this experiment at various positions may
be used to confirm the oscillatory nature of Aa(z,t) along the channel.

37
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Appendix A

ILLUSTRATION OF THE TECHNIQUES IN THE
APPROXIMATION PROCEDURE*

Single-channel System

A single heated channel with a downcomer is first considered. No
coupling effect due to the other channels operating in parallel is assumed.
After illustrating the analysis of this system, a system with two heated
channels operating in parallel is considered to show how one could analyze
if coupling exists between them due to the common downcomer.

Let the heated channel have a cross-sectional area A and length L.
The area of cross section of the downcomer is taken to be Ag and the
length L.

The linearizedperturbed forms of the conservation equations of mass,

energy, and momentum in the independent variables x and s are rewritten
as follows:

L e
s 5 (pg-pg) Dot (pgS- pf) 57 (@0l VE+ Vio Ad]

e fol Vs e phe e A
P St Pg gy [Viola + alVg] = 0; (A-1)
it o A o
s 5 (pghg - pfhe) Ba + (pghgS - pehg) 5= [20 AVs + Viha]
QAV; ds
+ pghy ‘ax—f A Pghg = [VeoAa + apAvy]
iL
= 5x f(x)C(s); (A-2)

I L
’g = kaVfD AVf a7 ? g(pg- pf)AOL
L,
=k [(Vfo Lo + g AVE)(pgS - pf) + p£AV{]

o) 2
— 2
+ 5% [Vio (pg8* - pg) B a + 2Vgoaq (pgS? - p5) A Vs + 205V AV].

(A-3)
C(s) is arbitrary.

* Appendix B contains some properties of Legendre polynomials which are used in the following.



Let AVf and A a be approximated to the third degree in x:
AVE = ap + a1Pi(x) + a,Pp(x) + a3Ps(x); (A-4)
Ao = by + b1Pi(x) + bP,y(x) + bPs(x). (A-5)

The steady-state terms are assumed to be as follows:

Vio = Ag + A1Py(x) + A,P,(x); (A-6)
ao = Bg + B1Py(x) + B,P,(x); (A-7)
S = So + S;P;i(x). (A-8)

The space variation of the perturbation in heat is given by
f(x) = co + c1Pi(x) + c;Pp(x). (A-9)

Some new constants are defined below:

Pg - P = Mii (A-10)
@eo0 =P = N (A-11)
pghg - Pshy = My (A-12)
pghgSo - pehs = Ms. (A-13)

Equations (A-1) and (A-2) are rewritten after introducing the new constants
defined in Eqgs. (A-10) to (A-13), and substituting for S from Eq. (A-8):

i, Ny ) Pr oAV
= — Wi+ Vioha) + =
s > Ao + N, o (OLOA it fo ) N, Ox
P Sl pg51 o)
(o AVE+ Vg Aa) + T (wgAVE+VeAa) = 0;
(A-14)
1. M, d P¢hg OAVE
B Aoe+-NTl‘Fx-(onoAVf+Vfvoc)+ﬁl— =
pghgS: PghgSi 3 L
—% (oAVE+ Ve Aa) + ngg xg(OLOAVf-i-VfOAO(,) = HEAelE)

(A-15)
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Subtracting Eq. (A-14) from (A-15),

pshg  pr\OAVy pghg P
<& -&>—a (g AVE+ Vo Aa) + <f— LN, —Fg Sy(ae AVi+ Ve Aa)
1

M, N;Jox M, N; / ox M,
Pghg P d ii (A-16)
5= = =
+ < ; N Sy x 5 (o AVE+ Vi Aa) o f(x) C(s).

Equations (A-14) and (A-16) are used as the mass and energy balance equa-
tions. Equation (A-3) is the momentum balance equation.

It is observed that there are9 unknowns, including C(s). Six independ-
ent equations are obtained by multiplying each of the Egs. (A-14) and (A-16)
by Py(x), Py(x), and P,(x), respectively, and integrating over x between the
limits -1 and +1 (orthogonality conditions). The two boundary conditions,
namely, the perturbed pressure drop around a closed hydraulic loop is zero,
and Aa = 0 at x = -1 (thatis, z = 0) yield two more independent equations.
The eight equations thus obtained would enable one to evaluate the transfer
functions ao(s)/C(s), al(s)/C(s), etc.

© (vgAVE+VEyAa), and o AVf are
ox ox
expressedbelow by means of the substitutions corresponding to Egs. (A-4) to
(A-9). This is done to apply the orthogonality conditions to Eqgs. (A-14) and
(A-16) conveniently.

The quantities (a o AVf+ Vo Aa),

oo AVE + Vig Ao = (agBg+Aebg)Po(x) + Pi(x)(aoB; + Boa; +Agb; +boA;) + Pa(x)(aoB, + Boa, +Agb, +boA;)
2 3
+ Ps(x)(Boas t Agbs) + 5 By () 3 Pj(x)| (a1B, + Bia, +byA, + Ayb,)

+ [% Po(x) + 47 Pq(x)i| (Bias +Ajbs) + |:P—U3(>i) +§ Pz(x)i| (a1By +byA,)

+ [% Po(x) + 2 Pu(x) + 32 P4(x)] rhipa)

+ [% Pi(x) + 1—45 P,(x) + % P5(x):l (Byaz +A,bs); (A— 17)

d
= (00AVi+VioAa) = Po(x) (agB; + Boay + Agby +boA;) + 3Py(x) (aoB, + Bea, + boA,

+ [Po(x) + 5P,(x)](Boas + Agbs) + [Po(x) + 3P,(x)](a1B, + Bya, +byA, +Ab,)

+ [3Pi(x) + 4P5(x)](Bjas + Ajbs) + 2P(x)(a;B; +byA,)

7 18
a5 [_5 Py(x) + 5 P,(x)] (2zB2+bAz) + [Po(x) + %é Pp(x) + g Py(x)](Boas + Azbs):

(A-18)
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g (0o AVE+VeoAa) = Py(x)(2oB) + Boay +Agby +boA;) + [Po(x) + 2P,(x)](20B, + Boaz + Agb, +boA,)

+ [3P;(x) + 3P3(x)](Boas + Agbs) + [% Py(x) + % p,(x)] (1B, + Bja, +byA, +Ab,)
6
+ [Po(x) i ZT Pa(x) + % P4(x)j| (Biaz+Ab;) + |:% Po(x) + % Pz(x):l (a1B; +byA,)

4 Z2 12
+ I:g Po(x) + - Py(x) + 35 Pa(x):| (azB; +b,A,)

i [}7774 Pi(x) + ?—é Psy(x) + % P5(x):l (Byas + Azb,); (A-19)
9
e AV¢ = Po(x)a; + 3Pi(x)a, + [Po(x) + 5P,(x)]as. (A-20)

Multiplying Eqs. (A-14)and (A-16) by Py(x), integrating in x between the
limits -1 and +1, and dividing the resulting equations by 2, these are
obtained

séb0+

Pt
4
> — (aoB; + Boaj + Agb; +boA; + Bas + Agbs + A1 B, + Bia, +bjA, + Ab, + Bas + Agbs) + N, (a; +a3)

Ny

=

PyS1 1 1
_Ng—— [aoBD +Agbo+= (21By +b1A;) +—= (2B, +byA;)
L

3 5
pgS 2 4 Tl
+ N, aoB, + Boa, + Agb, +boA, + Bjas +A1b3+§ (a;B; +bA;) +g(azB2+bz 2)| = 0 (A—Zl)
<% = F>(at,B1 + Boa; + Agb;y +boA; + Boas + Agbs +2,B; + Bja, + bjA, + A1b, + Byas + Agbs)
1
f Hay) Pebe Pe\g [oom,+am R er A
(a1 3 M, N, 1 0Bo ot Ay 1634
+ E a,B, + bA, + (aoB, + Boaz +Agby + boA, + Biaz + Ajbs)
2 4 Lc -
& 3(a,Bl+b1A1)+g(asz+bzA2):| = S2c(s). (a-22)

Multiplying Eqs. (A-14) and (A-16) by P;(x), integrating in x between the
limits -1 and +1, and dividing the resulting equations by 2/3 we obtain

16, gl E ]| e e
5 5br N, 3(agB, + Boas + Agb, +boA, + Bjag +Arbs) + 2(aiBi+bidy) + 5 (a;B; +bzA, N, (322
2 9
L b I:aoBl +Boa +Aby +boAy + ¢ (a1B; + Biag + DA, +A1b) + 37 (Baas +Aszbs ﬂ
1
Pgsl
+ aoB; + Boaj + Agby +boA; + 3(Boas +Agbs)
1

170
t LSE (a1Bz + Byaz +biA; + Arb) + =5 (Bza,+Azb3):| =0 (A-23)
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he  Pf
M, N 12 Lol
<_M§ - rﬁ) [3(aDBZ+BDaZ+A0bZ+b0A2+Bla3+A1b3) +2(a1B1+biAy) + (228, +;4,)] *(M, N, ) (322)

h 11
+ (p%_g g %)sl [aDB] + Boay +Acby +boA; +3(Boas + Acbs) + = (a1Bz + Bias thiA, +A1by)
1 1

L —
, %‘—(sza,mzb;)} - 2c(s). (A-24)

Multiplying Eqgs. (A-14) and (A-16) by P,(x), integrating between the limits
-1 and +1, and dividing the resulting equations by 2/5, we find

N
s‘.£b2+——nl

Pf
> N [&')(Boa3 +Agbs) + 2—76 (B,a; +A,bs) + 3(a;B, + Bia; +hiA, +A1bz)] + N—](Sa;)
1

s 3 2 2
+ pf] 2 |:aDBZ +Boaz + Agb + oAy + = (Bias +A1bs) + 3 (a1By +b1Ay) + 2 (3282 + bzAz):[
1

S 4 22 L
+ P]\g] ! [Z(ang + Boa, +Agb; +boA,) + 2—76 (Bias +A1bs) + (21B1 +biAy) + = (azB, +bzAz)] =0
1
d (A-25)
pehs  pf
& 2 & 5(Boas +Agbs) + 2 (Byas +Azb;) + 3(a;B, + Bia +hiA, JrAlbz)} el < oA N_>(533)
M, N; 7 1 1

pgh 3 2 2
5 < bg/I B £>Sll:aoBz +Boa, +Agb, +boA, + —7—(B1a3 +Abs) =t (a1By +byA,) t= (a;B, *bzAz)]
1 1

ogh o 26 4
2t (ﬂ = S) sl[Z(AlB2+Bca2+Agbz+boAz) + = (B1az +Arbs) + 5 (a1B) +biAy)

My N,
Lc A-26
o Z—%Z (azB2+bZAZ)] = EXZC(S)' ( )
The boundary condition that Aa = 0 at x = -1 may be expressed as
by - by + b, - by = 0. (A-27)

The second boundary condition is that the perturbed pressure drop around
a closed hydraulic loop equals (perturbed pressure drop in the channel) +
(that at the exit) + (that in the downcomer) + (that at the inlet) is 0.

The perturbed pressure drop in the channel is obtained by substitut-
ing Eqgs. (A-4) to (A-13) into Eq. (A-3) and integrating in x between the
limits -1 and +1:
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- AP 1 A | aA;
channel =2¢LKf (aoAot+ —3— +—— )+ Lg(pg - P )bo + sL|Nyq(agBo +Agbo)

1 1 4
i (a,B; +b1A)) + = (a,B, + bzAz)} i3 pgau] & SLpgsl[S (2oBy + Boa; + Agb; +boA,)

2 8
— A 2
+ 15 (21B2 + Biaz tbiA, +Aby) + 57 (Baas +Azb3)] + (bo+by +b; +by) [Vfo (P gS?- p()] o

+ (agta; +a; t+as) I:Vioao( PgS* - pf) + Pfoojl e (ag-ay+a;-as)(PEVeo) _ -
= x=1

(A-28)

The perturbed pressure drop at the exit is neglected along with the eddy
momentum loss at the exit in accordance with the reasonings given in
Section II.

The perturbed pressure drop in the downcomer is due to friction
and acceleration in it, and is given by

- 8Pp(s) = Kiy AVp + Kap s AV, (A-29)

where Kfy and Kap are obtained from steady-state information, and AVp
is the perturbed velocity in the downcomer. The assumption of no steam
carryunder in the downcomer is used in writing Eq. (A-29). Taking water
to be incompressible, one may express continuity of flow through the down-
comer and the channel as follows:

A
AVD = E) (AVf)X:—l

A
= A—D(ao-aﬁaz-aa)- (A-30)

Hence, Eq. (A-29) may be rewritten as

A A
- APp(s) = Kip Ap (ag-ayt+az-as) + sKaDKB(ao—a1+a2—a3).

(A-31)
The perturbed pressure drop at the inlet may be stated as
- APt =it AV )y
= Kinlet (a0-21t+a;-2as), (A-32)

where Kinlet is computed from the steady-state data. Equations (A-28),
(A-31): and (A-32) are added to obtain an expression for the perturbed
pressure drop around the loop, which is equated to zero to obtain
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1A azA; i
2LKg (al,A0 e o > + Lg(pg- pg)bo + sL|:N4{(aoBo+Aobo) G2 (a,B; +b14)

il 2
+ lg (2,8, *Azbz)} + pgaqi| + sLPgS; l:g (20B1 + Boay + Agby +boA1) + 12 (1B, + Bja, +b1A; + Ajby)
2 2i_
+ —3—5 (Bas +Azb3)] +(bo+ by + bz +b3)|:Vfo( P‘gsz =P f)] S (agta;+ta,+as) [Vfﬂao( PgS Pf)

A A E 25
+ info]x:‘ - (ag-a1ta;-as) I:pf Vfc] A <KfD i + Kinlet * sKapy A_’5>(ao -a;+az-a;) .

(A-33)

Equations (A-21) to (A-33) may be expressed in the following matrix equa-
tion form:

[A(s)][x(s)] = [BIC(s), (A-34)

where [A(s)] is an 8/8 matrix whose elements may contain s, [x(s)] is a
column matrix formed by the unknowns ag, aj, bg, by, etc., and [B]is another
column matrix whose elements are the coefficients of C(s) in Egs. (A-21)
to (A-33).

Therefore,

[x(s)] = [A(s)]7'[B]. (A-34a)
The transfer functions ao(s)/C(s), al(s)/C(s), bo(s)/C(s), bl(s)/C(s), etca,
are readily obtained from Eq. (A-34a). The operation [A(s)]_lgB] is per-

formed by means of a digital computer program due to Guppy. 13)

Example: Consider a single-channel loop, 4 ft long and with a diameter of
1 in. The downcomer length is taken to be 4 ft and the diameter 6 in.

The values of Ay, A}, By, B;, etc., (corresponding to 80 kW/liter -
uniform heat flux) are substituted in Eqs. (A-21) to (A-33). The resulting
equations are arranged in the form of Eq. (A-34). This is shown in Fig. A-1.
We take f(x) = co and (L/2A)co equal to 1 for convenience. By means of
Guppy's digital computer program, the common denominator of the transfer

functions ao(s)/C(s), al(s)/C(s), etc., along with the respective numerators,
are obtained.

Common Denominator:
1.5585 x 10° s* + 4.8221 x 10° &3
+6.1761 x 107 s + 3.8168 x 10% s

+1.5007 x 107,
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= Sag =] [ =
L
0.6 : .680 0 2.698 20.010 —
80 0 2.698 20.010 0.68! 2 71 %
0 1.000 0 -1.000 0 1.000 0 -1.000 % 0
0.021 0 1.300 20.178 8.089 30.273 2.065 29.336 a b
1 2R
-0.300 0 0.021 1.661 2.000 27.366 13.480 53.580 b L
! Zr 2
2.0u6S
0.246  +7.50 -0.777 0 0.2u6 7.590 -0.777 0 3, 0
= e
2.0u46S )
-0.307 0 0.493 +2.883  -2.269 18.163 0.738 4.798 b, 0
2.046S
0.004 0 -0.307 -0.943 0.732 +5.7U6 -3.750 28.785 a, 0
63.3385 -7.6925  -624.250S 1.928S  570.100S  -0.011S  -56M.130S
+125.820 0 +402.566 -5615.170 +24.020 +3101.560 +391.380 -5615.170 o, 0
L— il |l = [ 0
112-3789

Fig. A-1. Matrix Equation for Transfer Functions at 80 kW/liter - Uniform

Numerator of ao(s)/C(s):
7.1972x10% s* + 2.9894x10* s*- 6.1898x10% s*-3.3413x107 s+3.6739x 108,

Numerator of a.l(s)/C(s):
5.6870x 10% s*+1.8228x10° s+2.6843x107 s?+1.2361 x108 s+3.0569 x 108,

Numerator of az(s)/C(s):
-9.5380x10% s*-4.5770x10° s3-9.6600x 105 s2-6.6697 x10% s - 6.2960x 107,

Numerator of a3(s)/C(s):
1.4867x10% s*-2.0311x10% s3-1.2276x10® s2-7.6197x10° s+8.5000x 10°,

Numerator of bo(s)/C(s):
2.2440 x 10* s? + 5.2870 x 10° s® + 1.1080 x 107 s + 3.7102 x 107,

Numerator of bl(s)/C(s):
22.3735 % 10* 83 - 1,1088 x 10% s - 1.4726 x 10* s + 1.2978 x 107,

Numerator of bz(s)/C(s):
1.4692 x 10* s® - 8.4213 x 10° s? - 7.2076 x 10° s - 1.4812 x 10"

Numerator of bsy(s)/C(s):
6.0867 x 10* % + 7.9537 x 10% s? + 3.8700 x 10° s + 9.3120 x 10°.

Parallel-channel System
Favmlaaes om0 T 20

A system of two heated channels operating in parallel with a common
downcomer may be analyzed by a method analogous to that for a system with



only one heated channel. It is assumed that the perturbed heat input into
the channels may be expressed as

Ap = £(z)C(s) (A-35)
and

Ag' = f'(z)C(s), (A-35a)

where f(z) and f'(z) are known, and C(s) is common for both Egs. (A-35) and
(A—35a). Primed symbols correspond to the second channel.

In a third-degree approximation of this system, there would be 17 un-
knowns: 8 for the first channel, 8 for the second channel, and 1 due to ©f()-
The 16 equations necessary to obtain the transfer functions would consist of
2 sets of 8 equations each. These sets would have a form identical to that of
the system with a single heated channel, except that the terms corresponding
to the perturbed pressure drop in the downcomer would contain the unknowns
of both channels. One may express the perturbed pressure drop in the down-
comer as

A
-APp = (KfD+ sKaD>A‘_D(a0 -a;+a;-a;)

! 1 1

+ (KfD+sKa)-ﬁj—D(a0—al+aé—a;). (A-36)

Example: Consider a system of 2 channels working in parallel with a com-
mon downcomer. Each channel is 4 ft long and has a diameter of 1 in. The
downcomer dimensions are variable.

The 16 equations are written in the form of Eq. (A-34), as is shown
in Fig. A-2. The channels have a uniform steady-state heat flux at 80 kW/
liter and 20 kW/liter, respectively. Table V gives the coefficients Ay, Ay,
By, B;, etc., corresponding to these heat fluxes. The downcomer has negli-
gible friction and the perturbed acceleration pressure drop in it is taken as
50s[ag-a;+a,-as+ag-a; +a,-as]. The transfer functions may be readily
evaluated if f(x) in each channel is specified.



0.680 0 2.698 20.010 0.680 0 2.698 20.010 0 0 0 0 0 0 0 0 30| |k
0 1.000 0 -1.000 © 1.000 0 -1.000 0 0 0 0 0 0 0 0 bo 0
0.021 © 1.300 20.178  8.089  30.273  2.065 29.336 0 0 0 0 0 0 0 0 Al |Eme
-0.300 0 0.021  1.661 2.000 27.366 13.480 53.580 O 0 0 0 0 0 0 0 b | |Le,
2.0465
0.246 +7.590  -0.777 0 0.246 7.5 -0.777 0 0 0 0 0 0 0 0 0 a, 0
2.0465
-0.307 0 0.493  +2.883 -2.269 18.163 0.738  4.798 0O 0 0 0 0 0 0 0 b, 0
2.0465
0.004 0 -0.307  -0.943  0.739  +5.746 -3.750 28.785 O 0 0 0 0 0 0 0 a, 0
113.3375 -57.6925 -624.250S 51.9285 570.100S -50.011S -564.1305
+125.820 0 +402.566 -5615.170 +24.020 +3101.560 +391.360 -5615.170 0  -50.0005 0  50.000s O -50.0005 0 50.0008( | b, | | 0 | o
-50.000 +50.0005 -22.320S -55.7405 -420.8605131.7805
50.0005 0 -50.0008 0 50.0005 O -50.000s 0  -1162.000+356.000 0  -0.400 -1162.000 +360.200 -3101.56G +78.800 || b] 0
2.0145
0 0 0 0 0 0 0 0 22.000 -4.275 +2.100 0.540 O 0 0 0 a 0
2.0145
0 0 0 0 0 0 0 0 2.100 0.540 13.200 -2.565  +1.400 0.360 O 0 b} 0
2.0145
0 0 0 0 0 0 0 0 4.400 -0.855 0.700 0.180  4.400 -0.855  +0.700 0.180 || a; 0
0 0 0 0 0 0 0 0 22.000 20.900 2.100 0.540 O 0 0 0 B! '2-_;':;
0 0 0 0 0 0 0 0 2.100 0.540 13.200 12.540  1.400 0.360 0 0 | (e
0 0 0 0 0 0 0 0 -1.000 0 1.000 0 -1.000 © 1.000 0 b 0
0 0 0 0 0 0 0 0 4.400 4.180 0.700 0.180  4.400 4.180  0.700 0.180 (| a! %coj
S L J |-
112-3790 Fig. A-2. Matrix Equation with Acceleration Coupling
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Appendix B
LEGENDRE POLYNOMIALS

Legendre polynomials of the nth degree, Pp(x), may be defined by
the equation

foreme == 0] W2 583 E e tcy

The polynomials of the lowest degrees are

PO(X) = b
i)l =
Palx) = 3 (352~ 1)

Py(x) = 3 (5%° - 3%)

P,(x) = = (35x* - 30x% +3)

|~

(63x° - 70x> + 15x)

w|—

1
Eilsl = (231x%-315x* +105x% - 5).

The orthogonality of the Legendre polynomials is indicated by the equations

1
f P, (x)Pp(x) dx = 0 for n # m;

=1

il
2 i
\/il [Pn(x)] dxe- m .

The asymptotic behavior of the Legendre polynomials may be de-
scribed by the following equations:



Py(1) =1

Bnleld = (<)

Pan+1(0) = 0
I 2n-1
P,(0) = (-1)» Z.?(Zi)hot oo et = ()],

The term x™ may be expressed as a sum of the Legendre polynomials
of degree up to and including n. For example:

1 = Py
XE=SD,
2 1
X §(P0+2 P,)

1
= 3(3 P, +2 P,)

1
S §(7 Py +20 P, +8 P,)

1
o 5(27 P, +28 P;+8 Pq)

1
s m(33 Po+110 P,+72 P, +16 Py).

More information about Legendre polynomials is available in Ref. 14.
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